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Abstract
The adiabatic eigenstates of an electron placed in a deformable continuum with
elastic anharmonicity are analysed in the framework of a scaling analysis. The
polaron solutions in an anharmonic continuum are compared with the solutions
in a harmonic approximation. An adiabatic treatment of the ground state of a
carrier in an anharmonic continuum is presented here. This procedure enables
the author to obtain some information about the size of the polaron and its
stability in an anharmonic crystal. The estimates of anharmonic corrections
for α-sexithiophene and Mo2S3 show that the anharmonicity can affect the
electrical-transition properties of materials in a situation in which the charge
carriers are polarons.

1. Introduction

The problem of the motion of an electron in a deformable crystal has been attracting the
interest of many solid-state physicists for a long time. Since Landau [1] pointed out the
possibility of self-trapping of an electron in a deformable lattice as early as in 1933, studies
of the effect of the electron–lattice interaction on the electronic states have employed both
a variety of models and a variety of approaches [16]. In particular, rather distinct models
of the electron–lattice interaction, such as the long-range interaction of an electron with the
electric dipoles associated with longitudinal-optical-mode displacements [2, 3, 17] and the
short-range interaction characteristic of nonpolar crystals, have been intensively investigated
[4–8, 18, 19]. For long-wave longitudinal (optical) phonons this interaction is characterized
by the dimensionless coupling constant α = (1/ε∞ − 1/ε0)e2/2l0h̄ω0, where ε0 and ε∞ are
the static and high-frequency dielectric constants, and l0 = (h̄/2m∗ω0)

1/2 is a length scale.
Here ω0 is the limiting frequency of longitudinal phonons and m∗ is the band effective mass
of the electron. In addition, much attention has been focused on the difference in behaviour
of an electron in a three-dimensional continuum in comparison with a one dimensional quasi-
crystal [9, 16]. The author emphasizes that all referenced theories are based on the treatment
of a problem in a harmonic approximation, in which a strain constant S is a parameter solely
responsible for deformation. In fact, the parameter of elastic anharmonicity G is not equal to
zero in a real crystal [10]. Therefore, one may include the anharmonicity in the theoretical
model of a polaron. There is considerable current interest in anharmonic effects in experimental

0953-8984/01/225115+12$30.00 © 2001 IOP Publishing Ltd Printed in the UK 5115



5116 A A Kusov

studies of polarons in semiconductor quantum dots [15, 20–22]. Generally speaking, the
anharmonicity can affect the polaron state in many ways. In the first place, the anharmonicity
affects the ground state energy of a polaron E and its size lp. Secondly, the polaron decay
can be triggered by the instability of its phonon component [15]. In a related paper, Verzelen
et al [15] suggested that the anharmonicity driven instability of optical phonons leads in
semiconductor quantum dots to a decay of polaron states which otherwise would be everlasting.
The phenomenological approach [15] was dealing with a problem of a decay of polaronic
state in the case of a weak electron–phonon coupling, α ≈ 0.15. In this approximation,
the energy of the polaron state was assumed not to be affected by the anharmonicity. In
contrast to this assumption, the estimate (see below) shows that in many cases the anharmonic
correction �Eanh to the energy of polaron is not negligible. This correction is especially large
(�Eanh/E ∼ 0.01–0.1) in the case of a strong electron–phonon coupling, α � 1, when the
relevant deformation of a lattice is not small.

In the following we consider the anharmonic crystal with a strong electron–phonon
coupling and study how the anharmonicity affects the ground state energy of a polaron, its
size and its stability. The calculation of the ground state energy, the polaron mobility and the
polaron mass mp in an anharmonic crystal from the second quantized formulation or from the
variational method is a very complex task. We shall adopt a different approach based on a
scaling analysis. The scaling analysis enables us to obtain some important information on how
the anharmonicity affects the polaron in systems with both distinct models of the electron–
phonon interaction and dimensionality. The scaling analysis is ideally suited for this goal and
it has been previously used in the theory of polaron in the harmonic approximation [7]. In
order to simplify the problem as far as possible, the author presents an adiabatic treatment of
the ground state of an electron placed in a deformable anharmonic continuum. The adiabatic
approach is applied in the limit of a strong electron–phonon coupling [12] α > 10. In the
adiabatic limit, the size of a polaron is given by lp ≈ 10l0/α. The condition for the applicability
of the continuum approximation is lp > r0, where r0 is the lattice constant. As a result, we find
the following condition for the applicability of the scaling analysis: 10 < α < 10l0/r0. Since
l0 > r0 one may expect that the approach adopted in this paper holds within a fairly wide range
of the electron–phonon constant α. In the present paper, we shall estimate the magnitude of
an anharmonic effect for two typical compounds. A scaling analysis below provides definitive
predictions as to the degree of spatial localization of the adiabatic eigenstates of an electron
and their dependence on range and strength of the electron–lattice interaction. It is noted
that the behaviour of the adiabatic ground eigenstate of an electron may vary continuously or
discontinuously when the elastic anharmonicity is included, depending on the dimensionality
of the system and on the character of the electron–lattice interaction.

2. Estimate of an anharmonic correction

To begin, we will estimate the magnitude of the anharmonic correction for the elastic strain
energy of a polaron. We assume that the elastic strain energy ES due to the local dilation �(�r)
of a deformable anharmonic continuum is given by the following expression [10]:

Es = 1

2
S

∫
dτ 1�2(�r1)− 1

3
GS

∫
dτ 1�3(�r1) (1)

where �r1 here is the coordinate, S is a strain constant, G is a dimensionless Grüneisen
coefficient, which characterizes the anharmonicity, and τ 1 are the space coordinates. The
first term (or Eh

s ) in the right-hand side of equation (1) is the harmonic part of the elastic
energy and the second term (or Eanh

s ) is the anharmonic correction with an accuracy to the
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cubic term. At this point we can estimate the magnitude of the anharmonic correction or the
parameter µ = Eanh

s /Eh
s ≈ 0.7G|�|. For the sake of simplicity, we shall follow the well

known model of a small polaron given by Toyozawa [6]. He assumes that the crystal has
deformed in such a way that the volume dilation �(�r) < 0 is given by

�(�r) =
{
� = const (|�r| < R0) (2)

0 (|�r| > R0) (3)

where R0 is the radius of the dilation (in his model, R0 is of the same order of magnitude as
the lattice constant r0). One can estimate the dilation � from the condition of self-trapping of
an electron inside the three-dimensional square-well [6]:

2m∗R2
0E1|�|
h̄2 �

(π
2

)2
(4)

whereE1 is the deformation potential constant. It is now of interest to estimate the anharmonic
effect for two specific materials: α-sexithiophene (α-6T), which is used as a thin-film transistor
[13], and a linear chain compound, Mo2S3 [14]. It is generally accepted [13, 14] that
the polarons are responsible for the transport mechanism in both materials. The relevant
parameters of α-6T are [13] α = 15, R0 = 3.8 × 10−8 cm, m∗ = 2.6 me, E1 = 5.3 eV,
G ≈ 2, h̄ω0 = 0.007 eV. Inserting these values into equation (4) gives � > 0.05 and
µ = Eanh

s /Eh
s ≈ 0.7G|�| > 0.07. The appropriate energy of a polaron [12] and the

anharmonic correction to this energy are |Epol| ≈ 0.1α2h̄ω0 = 0.15 eV, �Eanh > 0.007 eV.
One can see that �Eanh > kbTT = 0.005 eV for a characteristic transition temperature
TT = 45 K. This estimate shows that the anharmonic correction should affect the intrinsic
transport properties of organic-field transistors. The relevant parameters of Mo2S3 are [23–
25] R0 ≈ 3.2 × 10−8 cm, m∗ ≈ 7.2 me, Fermi energy EF ≈ 0.09 eV, Young’s modulus
Y ≈ 2 × 1012 dyn cm−2 and phonon frequency ω0 ∼ 1013 s−1. These parameters allow us
to estimate the phonon energy h̄ω0 ≈ 0.005 eV and the electron–phonon coupling constant
α ≈ 17. The dilation � = 0.13 calculated in [14] for Mo2S3 corresponds to an anharmonic
correction �Eanh > 0.01 eV. The anharmonic correction �Eanh has the same order of
magnitude as the energy difference E ∼ 10–20 meV between wells in a double-well potential
[14]. The double-well potential model describes first-order phase transitions between a weakly
conducting ground state and a relatively highly conducting metastable state. The author
concludes from this estimate that the anharmonic correction affects the low-T carrier transport
and the electrical noise in Mo2S3.

3. Ground-state energy

The calculation of the ground-state energy of the electron coupled with a deformable continuous
anharmonic medium is based on an approach of Emin and Holstein [7]. In this approach, the
motion of an excess electron is sufficiently rapid compared to the motion of the heavy massed
atoms, so that the electron may be assumed to adjust to the instantaneous positions of the
atoms. If the kinetic energy of the lattice atoms is neglected, the ground state energy of the
coupled electron–atom system is supposed to be the minimum of the sum of the electron’s
ground-state energy Ee1 and the strain energy Es of the deformable continuum. We shall
consider the problem of an anharmonic continuum containing defect, so the Hamiltonian He

of an electron placed in a deformable continuum is [7]

He = Te + Vd(�r) +
∫

dτ 1Z(�r, �r1)�(�r1) (5)
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where Te is the electron’s kinetic energy operator; the second term is the contribution to the
potential energy of an electron at �r associated with the presence of the defect. The author
takes the defect potential to be coulombic Vd(�r) ∝ |�r|−1. The final term, or the electron–
continuum (electron–lattice) interaction, depicts a linear dependence of the potential energy of
an electron at �r on the dilation associated with each point of the continuum �( �r1); Z(�r, �r1) is
a function which characterizes the strength and range of the electron–continuum interaction.
Following [7], we consider two kinds of interaction of the carrier with an elastic continuum:
the long-range interaction of an electron with the deformation-induced electric polarization
Z(�r, �r1) = EL|�r − �r1|−2, and the local interaction or the continuum version of the short-range
interaction of the molecular-crystal model Z(�r, �r1) = ESδ(�r − �r1). Generalizing, we write
the interaction function as the sum of these contributions:

Z(�r, �r1) = EL|�r − �r1|−2 + ESδ(�r − �r1). (6)

The electronic energy, Ee1, for a given strain field, �(�r), is given by

Ee1 =
∫

dτ(∗(�r)He((�r) (7)

where ((�r) is the lowest-energy eigenfunction of He. The ground-state energy of the coupled
system corresponds to a situation in which a dilation �(�r) is such as to yield the lowest total
energy E = Ee1 + Es . Minimizing the energy E with respect to �(�r), one finds that �(�r) is
the root of the equation

�2(�r)− 1

G
�(�r) +

1

G
�0(�r) = 0. (8)

The last term of equation (8) is proportional to the dilation �0(�r) calculated in a harmonic
approximation [7]:

�0(�r) = −S−1
∫

dτ 1|(( �r1)|2Z( �r1, �r). (9)

The solution of equation (8) corresponding to the minimum total energy is given by

�(�r) = 1

2G
− 1

2G

√
1 − 4G�0(�r). (10)

Expanding the last term
√

1 − 4G�0(�r) ≈ 1 − 2G�0(�r)− 2G2�2
0(�r) in a Taylor series with

two terms we calculate the dilation �(�r) in an anharmonic approximation as the sum of two
terms: the harmonic term �0(�r) and the anharmonic correction which is proportional to the
Grüneisen coefficient G:

�(�r) = �0(�r) + G�2
0(�r). (11)

Since from equation (9)�0 < 0, the anharmonic correction will always decrease the magnitude
of the dilation |�| < |�0|. The dilation �(�r) in terms of the parameters of our problem is
given by

�(�r) = −S−1
∫

dτ 1|((�r1)|2Z(�r, �r1)

+GS−2
∫

dτ 1|(( �r1)|2Z( �r1, �r)
∫

dτ 11|((�r11)|2Z(�r11, �r). (12)

Following the approach of [7] we utilize equation (12) to express the ground state energy in
terms of the ground-state electronic eigenfunctions. The result is

E = Te − Vd − Vint + Es (13)
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where the terms in the right-hand side of equation (12) are found to be

Te = h̄2

2m∗

∫
dτ |∇((�r)|2 (14)

Vd = −
∫

dτ |((�r)|2Vd(�r) (15)

Vint = V h
int + V anh

int . (16)

The harmonic and the anharmonic contributions to Vint are given by

V h
int = S−1

∫
dτ |((�r)|2

∫
dτ ′Z(�r, �r ′)

∫
dτ ′′Z(�r ′′�r ′|((�r ′′)|2 (17)

V anh
int = −GS−2

∫
dτ |((�r)|2

∫
dτ 1Z(�r, �r1)

∫
dτ 11|(( �r11)|2Z( �r1, �r11)

×
∫

dτ 111|(( �r111)|2Z( �r111, �r11). (18)

The strain energy of the continuum Es = Eh
s + Eanh

s is the sum of the harmonic and the
anharmonic contributions, respectively:

Eh
S = 1

2V
h
int (19)

Eanh
S = 2

3V
anh
int . (20)

One can see that expressions (17) and (19) for the harmonic contributions to the energy
are exactly the same as were derived in [7]. The ground-state energy E calculated from
equations (13), (16), (19) and (20) may be rewritten as

E = (Te − Vd − 1
2V

h
int )− 1

3V
anh
int (21)

where the term in parenthesis is the harmonic contribution to the energy and the last term is
the anharmonic correction V anh

int < 0. We can conclude that, since the above energy is, by
definition, the minimum energy of the coupled system, any alteration of the wave function((�r)
must necessarily increase the energyE. The scaling analysis makes use of the so-called scaling
factor [7] 0 < R < ∞, which is related to the spatial extent of the electron’s wave function
and which has the dimensionality of �r . In other words, if we change the length scale of the
(normalized) eigenfunction, replace ((�r) by R−d/2((�r/R), where d is the dimensionality of
the system, the energy (now a function ofR) must have its minimum at the scale corresponding
to the actual eigenstate, at R = 1. Introducing Z(�r, �r1) from equation (6) and wave function
R−d/2((�r/R) into equations (17) and (18), we calculateV h

int , V
anh
int and the ground-state energy

E(R):

E(R) = Te/R
2 − 1

2 (V
s
int /R

d + V
S,L
int /R

2 + V L
int/R

(4−d))− Vd/R

− 1
3 [V anh,L

int /R(6−d) + V
anh,S
int /R2d + V

anh,L2S
int /R4 + V

anh,S2L
int /R(2+d)] (22)

where the last term in the brackets is the anharmonic correction to the ground-state energy
E(R) = E(R)h + E(R)anh, and the sum of the first three terms is the adiabatic energy E(R)

in a harmonic approximation. The appropriate terms of equation (22) are given by

V S
int = (E2

S/S

∫
dτ |((�r)|4 (23)

V L
int = (E2

L/S)

∫
dτ

∫
dτ ′

∫
dτ ′′|((�r)|2|((�r ′′)|2/|�r − �r ′|2|�r ′ − �r ′′|2 (24)

V
S,L
int = (2ESEL/S)

∫
dτ

∫
dτ ′′|((�r)|2|((�r ′′)|2/|�r − �r ′′|2 (25)
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V
anh,S
int = −GS−2E3

S

∫
dτ |((�r)|6 (26)

V
anh,L
int =

{
−GS−2E3

L

∫
dτ

∫
dτ ′

∫
dτ ′′

∫
dτ ′′′|((�r)|2|((�r ′′)|2|((�r ′′′)|2

}
×{|�r − �r ′|2| �r ′′′ − �r ′|2|�r ′′ − �r ′|2}−1 (27)

V
anh,L2S
int = −3GS−2E2

LES

∫
dτ |((�r)|2

∫
dτ ′|((�r ′)|2|(�r − �r ′)|−2

∫
dτ ′′|((�r ′′)|2|�r ′′ − �r ′|−2

(28)

V
anh,S2L
int = −3GS−2E2

SEL

∫
dτ

∫
dτ ′|((�r)|4|((�r ′)|2/|(�r − �r ′)|2. (29)

We note that the harmonic terms V S
int , V

L
int and V S,L

int are the same, as calculated in [7].

4. Large polaron in a three-dimensional anharmonic continuum

At this point we can obtain several results of polaron theory in an anharmonic continuum
and compare them with well known results of adiabatic theory of polarons in a harmonic
approximation [7]. Consider first the polaron problem characterized by the study of a three-
dimensional defect-free continuum in which the electron interacts with a continuum solely
via the long-range component of the electron–continuum interaction: d = 3, Vd = 0,
V S
int = V

S,L
int = V

anh,S
int = V

anh,L2S
int = V

anh,S2L
int = 0. As one can see from equation (22),

the ground-state energy is given by

E(R) = Te/R
2 − 1

2V
L
int/R − 1

3V
anh,L
int /R3 (30)

where the first and the second terms correspond to the harmonic approximation and the third
term is an anharmonic correction. It is convenient to introduce the dimensionless parameter
β = 2V anh,L

int /3V L
int (0 < β < 1), which characterizes the magnitude of an anharmonicity

(β = 0 corresponds to the harmonic approximation). The comparison of the function E(R)

from equation (30) with the function E(R) calculated in a harmonic approximation [7] is
illustrated in figure 1. One can see that there are solutions which possess a solitary minimum
at R = 1 for both approximations. This means that the electron exists in a finite-radius,
bound state with a polaron always being energetically stable. This is the case of an electron
interacting with optical phonons under the condition that the size of the self-trapped state is
large compared to the lattice constant. The most sophisticated treatment of this ‘large’ polaron
is due to Feynman [3] with the path-integral method, substantially extended in the past decade
[16]. The relevant energy of the large polaron E = Ee1 + ES , the electron’s energy Ee1 and
the strain energy ES are explicitly calculated from equation (30) and from the condition for
minimum of the energy

∂E(R)

∂R

∣∣∣∣
R=1

= 0

E = −1

4
V L
int (1 − β) (31)

Eel = − 3
4V

L
int (1 + β) (32)

ES = V L
int

2
(1 + 2β) (33)

K = Eel/ES = −3

2

(1 + β)

(1 + 2β)
. (34)
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Figure 1. The ground-state energy E(R) of a large polaron in a three-dimensional continuum with
the long-range electron–continuum interaction: 1, the anharmonic approximation (β = 0.1); 2, the
harmonic approximation (β = 0).

The behaviour of E, Ee1 and ES as a function of β is illustrated in figure 2. One can see from
equation (31) that the energy E of a polaron in an anharmonic continuum is larger than the
energy calculated in a harmonic approximation. The anharmonic correction to the result of
Pekar [11] (K = −3:2) depends on the parameter of anharmonicity β and K > −3:2 for an
anharmonic continuum. One does see that the anharmonic correction for a 3D crystal with the
long-range interaction does not change dramatically the results of the theory of polarons in a
harmonic approximation. This is an example where the adiabatic ground eigenstate changes
continuously if we include the anharmonic correction. We shall see below that it is not the
case for a three-dimensional continuum with a solely short-range component of the electron-
continuum interaction.

5. Large polaron in a one-dimensional anharmonic continuum

The situation to be considered is that of a carrier which interacts with the defect-free one-
dimensional continuum solely via the short-range component of the electron-continuum
interaction. Emin and Holstein [7] have solved this problem for a harmonic continuum and
they have shown that this problem is equivalent to the Pekar problem discussed above with
V s
int simply replacing V L

int . We shall compare this result with the solution for an anharmonic

continuum where V L
int = V

anh,L
int = V

anh,L2S
int = V

anh,S2L
int = 0, and the ground-state energy

from equation (22) is given by

E(R) = Te/R
2 − 1

2V
S
int /R + 1

3 |V anh,S
int |/R2. (35)
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Figure 2. The energy of a large polaronE, the energy of an electronEe1 and the strain energyEs in
a three-dimensional anharmonic continuum with the long-range electron–continuum interaction.

One can see from equation (35) that the problem is still equivalent to the Pekar problem in a
harmonic approximation with an appropriate term (Te + |V anh,s

int |/3) replacing Te. Hence, the
polaronic solution corresponds to a large polaron (R = 1) with the energy of a polaron E < 0.
The electron’s energy Eel and the elastic energy ES are given by

E = − 1
4V

S
int (36)

Eel = − 3
4V

S
int (1 − 8

9β1) (37)

ES = 1
2V

S
int (1 − 4

3β1) (38)

where the parameter of anharmonicity β1 = 2|V anh,S
int |/3V S

int (0 < β1 < 1). One can see
from equation (36) that the anharmonic correction does not alter the result of the harmonic
approximation and the energy E of the large polaron coincides with the energy E calculated
in [7].

6. Small polaron in a three-dimensional anharmonic continuum

In contrast with the previously discussed one-dimensional problem, the adiabatic eigenstates
of a carrier in a three-dimensional defect-free deformable continuum with an elastic
anharmonicity where the electron–continuum interaction is solely short-ranged are quite
different from the solution in a harmonic approximation. The relevant energy of the bound
state E(R) from equation (22) is given by

E(R) = Te/R
2 − 1

2V
S
int /R

3 + 1
3 |V anh,S

int |/R6 (39)
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Figure 3. The ground-state energy E(R) of a large polaron in a three-dimensional continuum with
the short-range electron–continuum interaction: 1, the harmonic approximation (β2 = 0); 2, the
anharmonic approximation (β2 = 0.05).

where the first two terms in the right-hand side of equation (39) correspond to the harmonic
approximation, and the last term is the anharmonic correction. The behaviour of E(R) is
shown in figure 3 for both the harmonic and the anharmonic problems. One sees from figure 3
that the character of an adiabatic solution changes discontinuously with the inclusion of an
anharmonic correction. The only minima in the harmonic approximation which occur are at
R = ∞, corresponding to an unbound electron in an unstrained continuum, and at R = 0,
corresponding to an electron self-trapped in an infinitely deep and infinitesimally localized
deformation-induced potential well. The last situation is the continuum analogue of a small-
polaron state with an induced lattice deformation being essentially confined to a single unit
cell. It was emphasized on the basis of an approximate adiabatic argument [6] and variational
calculations [5, 6] that only these two situations, and no intermediate-range polaron, could
exist in 3D systems characterized by a short-range electron–lattice interaction. The energy of
a small polaron E = −∞ in a harmonic approximation, but the anharmonic problem gives
a finite magnitude of E. The anharmonic correction to the energy E(R) (or the last term in
the right-hand side of equation (39)) with a strong R−6 dependence at R = 0) does not affect
the unbound electron state at R = ∞, but it alters E(R) for R < 1, as one can see from
figure 3. Instead of an infinitely deep potential well at R = 0 (harmonic approximation) there
is a minimum with the finite energy E < 0 at some 0 < Rmin < 1. The author assumes that
this minimum corresponds to a small-polaronic state in a harmonic approximation (R = 0)
shifted to some position at R = Rmin > 0 due to an anharmonic term. Hence, the anharmonic
correction generates a quasi-polaronic state with a finite energyE < 0 and the degree of spatial
localization (size of a polaron) which is larger than the degree of spatial localization calculated
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Figure 4. The parameter Rmin of a size of a small polaron in a three-dimensional continuum with
the short-range electron–continuum interaction.

in a harmonic approximation. Figure 4 shows how the parameter Rmin depends on the degree
of anharmonicity β2 = 2|V anh,S

int |/V S
int (0 < β2 < 1). In spite of the fact that the discussed

solution is rather virtual than a real eigenstate, these states are close to each other (Rmin > 0.5
for a reasonable parameter of anharmonicity β2 � 0.05).

7. Electron interacting with both polar and acoustic mode in a three-dimensional
anharmonic continuum

The problem of a polaron in a 3D defect-free continuum with both the short-range and the
long-range electron–continuum interaction was studied in a harmonic approximation [7]. Two
different situations were found, depending on whether (Te − V

S,L
int /2)2 is greater than or less

than 3vSintv
L
int /2. If the long-range component of the electron–continuum interaction is weak,

two kinds of polaron, a small polaron and a finite-radius polaron, coexist. If the long-range
component of the electron–continuum interaction is sufficiently strong, a large polaron shrinks
in size until it undergoes a transition into a small-polaron state [7]. The author thinks that
this transition has its origin only in the fact that the energy of a small polaron is infinite in
a harmonic approximation. Indeed, the situation for an anharmonic continuum (where the
energy of a small polaron is finite) is qualitatively distinct from the harmonic problem. In a
reasonable approximation, we shall neglect the small terms V anh,L2S

int and V
anh,S2L
int and keep
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Figure 5. The transition of a small-polaron state into a large-polaron state in a three-dimensional
anharmonic continuum with both strong long-range and weak short-range interactions.

the terms V anh,L
int and V anh,S

int in equation (22). The ground-state energy is given by

E(R) = (Te − 1
2V

S,L
int )

R2
− 1

2

V L
int

R
− 1

2

(V
S,L
int − 2

3 |V anh,L
int |)

R3
+

1

3

|V anh,S
int |
R6

. (40)

The author conducted a numerical calculation of E(R) for V S
int � V L

int (the long-range
component of an interaction is greater than the short-range component) and it was found
that a small-polaron state experiences a transition into a large-polaron state for any reasonable
non-zero magnitude of parameter V anh,S

int . This transition is shown in figure 5, where an
unstable state with the energy E > 0 is also clearly seen. If the short-range component of
an interaction is greater than the long-range component (V S

int > V L
int ) a small-polaron state

does not undergo a transition into a large-polaron state. In its turn, a finite-radius polaron
experiences a transition into a small-polaron state. Therefore, in a 3D continuum with both
the short-range and the long-range components of an electron–continuum interaction, the
anharmonicity breaks the coexistence of a small polaron with a large polaron. There are only
large polarons for the dominant long-range electron–continuum interaction or small polarons
for the dominant short-range interaction. The energy of a large polaron (V S

int � V L
int ) as follows

from equation (40) is given by

E = − 1
4 [V L

int − V S
int − 2

3V
anh,L
int + 8

3 |V anh,S
int |]. (41)

One sees from this expression that, as in the case of a solely long-range interaction, the
anharmonicity destabilizes a large polaron, i.e. increases its ground-state energy.
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8. Conclusion

This paper presents an adiabatic treatment of the ground state of an electron placed in a
deformable anharmonic continuum. The author estimates the anharmonic effect for two
materials—α-sexithiophene and Mo2S3. It is concluded that anharmonicity can affect the
electrical-transition properties of crystals. The calculations were performed in the framework
of an approach of Emin and Holstein, who employed the scaling analysis to the problem in
a harmonic approximation. Systems with the dimensionality D = 1 and D = 3, where the
interaction of an electron with a continuum is long ranged or short ranged, were studied. It was
shown that the effect of an anharmonicity is different in 1D and 3D systems and it also depends
on the range of the electron–continuum interaction. It was found that in a 3D continuum in
which the electron interacts with the continuum solely via the long-range component of the
electron-continuum interaction, the anharmonic correction increases the ground-state energy
of a large polaron calculated in a harmonic approximation. The effect of an anharmonic
correction was found to be much stronger in a problem of a small polaron in a 3D continuum,
where the interaction of a carrier with a continuum is solely short ranged. The author notes that
the anharmonicity affects the degree of spatial localization of a small-polaron state. It is found
that in a 3D anharmonic continuum with both the long-range and the short-range interactions
of an electron with a continuum, the anharmonicity breaks the coexistence of a small polaron
with a large polaron. In a situation of an electron interacting with a 1D continuum solely via
the short-range mode no anharmonic correction to the energy of a large polaron was found. It
is concluded from these results that the anharmonic corrections can be important in the physics
of polarons. The magnitude of these corrections depends on the dimensionality of the problem,
the character of the electron-continuum interaction and the parameter of anharmonicity.
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